3.4.15 \(\int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx\) [315]

3.4.15.1 Optimal result
3.4.15.2 Mathematica [A] (verified)
3.4.15.3 Rubi [A] (verified)
3.4.15.4 Maple [A] (verified)
3.4.15.5 Fricas [A] (verification not implemented)
3.4.15.6 Sympy [F]
3.4.15.7 Maxima [F(-2)]
3.4.15.8 Giac [B] (verification not implemented)
3.4.15.9 Mupad [B] (verification not implemented)

3.4.15.1 Optimal result

Integrand size = 23, antiderivative size = 67 \[ \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx=\frac {A x}{a}-\frac {2 (A b-a B) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a \sqrt {a-b} \sqrt {a+b} d} \]

output
A*x/a-2*(A*b-B*a)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a/d/ 
(a-b)^(1/2)/(a+b)^(1/2)
 
3.4.15.2 Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.01 \[ \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx=\frac {A (c+d x)+\frac {2 (A b-a B) \text {arctanh}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}}{a d} \]

input
Integrate[(A + B*Sec[c + d*x])/(a + b*Sec[c + d*x]),x]
 
output
(A*(c + d*x) + (2*(A*b - a*B)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 
 - b^2]])/Sqrt[a^2 - b^2])/(a*d)
 
3.4.15.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4407, 3042, 4318, 3042, 3138, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4407

\(\displaystyle \frac {A x}{a}-\frac {(A b-a B) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A x}{a}-\frac {(A b-a B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\)

\(\Big \downarrow \) 4318

\(\displaystyle \frac {A x}{a}-\frac {(A b-a B) \int \frac {1}{\frac {a \cos (c+d x)}{b}+1}dx}{a b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A x}{a}-\frac {(A b-a B) \int \frac {1}{\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{b}+1}dx}{a b}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {A x}{a}-\frac {2 (A b-a B) \int \frac {1}{\left (1-\frac {a}{b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right )+\frac {a+b}{b}}d\tan \left (\frac {1}{2} (c+d x)\right )}{a b d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {A x}{a}-\frac {2 (A b-a B) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}\)

input
Int[(A + B*Sec[c + d*x])/(a + b*Sec[c + d*x]),x]
 
output
(A*x)/a - (2*(A*b - a*B)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b 
]])/(a*Sqrt[a - b]*Sqrt[a + b]*d)
 

3.4.15.3.1 Defintions of rubi rules used

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 4318
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbo 
l] :> Simp[1/b   Int[1/(1 + (a/b)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, 
f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4407
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
 (a_)), x_Symbol] :> Simp[c*(x/a), x] - Simp[(b*c - a*d)/a   Int[Csc[e + f* 
x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0]
 
3.4.15.4 Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.09

method result size
derivativedivides \(\frac {-\frac {2 \left (A b -B a \right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}}{d}\) \(73\)
default \(\frac {-\frac {2 \left (A b -B a \right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}}{d}\) \(73\)
risch \(\frac {A x}{a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) A b}{\sqrt {a^{2}-b^{2}}\, d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) B}{\sqrt {a^{2}-b^{2}}\, d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) A b}{\sqrt {a^{2}-b^{2}}\, d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+b \sqrt {a^{2}-b^{2}}}{\sqrt {a^{2}-b^{2}}\, a}\right ) B}{\sqrt {a^{2}-b^{2}}\, d}\) \(294\)

input
int((A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(-2*(A*b-B*a)/a/((a-b)*(a+b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/( 
(a-b)*(a+b))^(1/2))+2*A/a*arctan(tan(1/2*d*x+1/2*c)))
 
3.4.15.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 250, normalized size of antiderivative = 3.73 \[ \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx=\left [\frac {2 \, {\left (A a^{2} - A b^{2}\right )} d x - {\left (B a - A b\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right )}{2 \, {\left (a^{3} - a b^{2}\right )} d}, \frac {{\left (A a^{2} - A b^{2}\right )} d x + {\left (B a - A b\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right )}{{\left (a^{3} - a b^{2}\right )} d}\right ] \]

input
integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="fricas")
 
output
[1/2*(2*(A*a^2 - A*b^2)*d*x - (B*a - A*b)*sqrt(a^2 - b^2)*log((2*a*b*cos(d 
*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) 
 + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) 
 + b^2)))/((a^3 - a*b^2)*d), ((A*a^2 - A*b^2)*d*x + (B*a - A*b)*sqrt(-a^2 
+ b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x 
+ c))))/((a^3 - a*b^2)*d)]
 
3.4.15.6 Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{a + b \sec {\left (c + d x \right )}}\, dx \]

input
integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)
 
output
Integral((A + B*sec(c + d*x))/(a + b*sec(c + d*x)), x)
 
3.4.15.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx=\text {Exception raised: ValueError} \]

input
integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?` f 
or more de
 
3.4.15.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 274 vs. \(2 (58) = 116\).

Time = 0.33 (sec) , antiderivative size = 274, normalized size of antiderivative = 4.09 \[ \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx=\frac {\frac {{\left (\sqrt {-a^{2} + b^{2}} A {\left (a - 2 \, b\right )} {\left | -a + b \right |} + \sqrt {-a^{2} + b^{2}} B a {\left | -a + b \right |} - \sqrt {-a^{2} + b^{2}} A {\left | a \right |} {\left | -a + b \right |} + \sqrt {-a^{2} + b^{2}} B {\left | a \right |} {\left | -a + b \right |}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-\frac {b + \sqrt {{\left (a + b\right )} {\left (a - b\right )} + b^{2}}}{a - b}}}\right )\right )}}{{\left (a^{2} - 2 \, a b + b^{2}\right )} a^{2} + {\left (a^{2} b - 2 \, a b^{2} + b^{3}\right )} {\left | a \right |}} + \frac {{\left (A a + B a - 2 \, A b + A {\left | a \right |} - B {\left | a \right |}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-\frac {b - \sqrt {{\left (a + b\right )} {\left (a - b\right )} + b^{2}}}{a - b}}}\right )\right )}}{a^{2} - b {\left | a \right |}}}{d} \]

input
integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="giac")
 
output
((sqrt(-a^2 + b^2)*A*(a - 2*b)*abs(-a + b) + sqrt(-a^2 + b^2)*B*a*abs(-a + 
 b) - sqrt(-a^2 + b^2)*A*abs(a)*abs(-a + b) + sqrt(-a^2 + b^2)*B*abs(a)*ab 
s(-a + b))*(pi*floor(1/2*(d*x + c)/pi + 1/2) + arctan(tan(1/2*d*x + 1/2*c) 
/sqrt(-(b + sqrt((a + b)*(a - b) + b^2))/(a - b))))/((a^2 - 2*a*b + b^2)*a 
^2 + (a^2*b - 2*a*b^2 + b^3)*abs(a)) + (A*a + B*a - 2*A*b + A*abs(a) - B*a 
bs(a))*(pi*floor(1/2*(d*x + c)/pi + 1/2) + arctan(tan(1/2*d*x + 1/2*c)/sqr 
t(-(b - sqrt((a + b)*(a - b) + b^2))/(a - b))))/(a^2 - b*abs(a)))/d
 
3.4.15.9 Mupad [B] (verification not implemented)

Time = 15.47 (sec) , antiderivative size = 573, normalized size of antiderivative = 8.55 \[ \int \frac {A+B \sec (c+d x)}{a+b \sec (c+d x)} \, dx=\frac {2\,A\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,\left (a^2-b^2\right )}-\frac {B\,\ln \left (\frac {a\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+b\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {\left (a+b\right )\,\left (a-b\right )}}{d\,\left (a^2-b^2\right )}+\frac {B\,a^2\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,{\left (a^2-b^2\right )}^{3/2}}-\frac {B\,b^2\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,{\left (a^2-b^2\right )}^{3/2}}-\frac {2\,A\,b^2\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{a\,d\,\left (a^2-b^2\right )}+\frac {A\,b^3\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{a\,d\,{\left (a^2-b^2\right )}^{3/2}}-\frac {A\,a\,b\,\ln \left (\frac {a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d\,{\left (a^2-b^2\right )}^{3/2}}+\frac {A\,b\,\ln \left (\frac {a\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+b\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a^2-b^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\sqrt {\left (a+b\right )\,\left (a-b\right )}}{a\,d\,\left (a^2-b^2\right )} \]

input
int((A + B/cos(c + d*x))/(a + b/cos(c + d*x)),x)
 
output
(2*A*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)) - (B*l 
og((a*cos(c/2 + (d*x)/2) + b*cos(c/2 + (d*x)/2) - sin(c/2 + (d*x)/2)*(a^2 
- b^2)^(1/2))/cos(c/2 + (d*x)/2))*((a + b)*(a - b))^(1/2))/(d*(a^2 - b^2)) 
 + (B*a^2*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d* 
x)/2)*(a^2 - b^2)^(1/2))/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)^(3/2)) - (B*b 
^2*log((a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*( 
a^2 - b^2)^(1/2))/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)^(3/2)) - (2*A*b^2*at 
an(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(a*d*(a^2 - b^2)) + (A*b^3*log( 
(a*sin(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(a^2 - b 
^2)^(1/2))/cos(c/2 + (d*x)/2)))/(a*d*(a^2 - b^2)^(3/2)) - (A*a*b*log((a*si 
n(c/2 + (d*x)/2) - b*sin(c/2 + (d*x)/2) + cos(c/2 + (d*x)/2)*(a^2 - b^2)^( 
1/2))/cos(c/2 + (d*x)/2)))/(d*(a^2 - b^2)^(3/2)) + (A*b*log((a*cos(c/2 + ( 
d*x)/2) + b*cos(c/2 + (d*x)/2) - sin(c/2 + (d*x)/2)*(a^2 - b^2)^(1/2))/cos 
(c/2 + (d*x)/2))*((a + b)*(a - b))^(1/2))/(a*d*(a^2 - b^2))